资源类型

期刊论文 83

年份

2023 1

2022 2

2021 7

2020 4

2019 11

2018 6

2017 5

2016 5

2014 3

2013 2

2012 1

2011 5

2010 6

2009 12

2008 3

2007 3

2006 1

2005 2

2003 1

2002 1

展开 ︾

关键词

斜拉桥 4

大跨度桥梁 3

悬索桥 3

桥梁 3

大跨桥梁 2

抖振 2

海洋桥梁 2

D区 1

FRP 聚合物 1

FRP筋 1

PBO纤维片材 1

三索面空间结构 1

中国钢桥 1

交通导致振动 1

交通荷载 1

交通量 1

京津城际铁路 1

低刚度 1

保障 1

展开 ︾

检索范围:

排序: 展示方式:

Civil and structural engineering applications, recent trends, research and developments on pultruded fiber reinforced polymer closed sections: a review

Alfred Kofi GAND, Tak-Ming CHAN, James Toby MOTTRAM

《结构与土木工程前沿(英文)》 2013年 第7卷 第3期   页码 227-244 doi: 10.1007/s11709-013-0216-8

摘要: The objectives of this study are to review and evaluate the developments and applications of pultruded fiber-reinforced polymer composites in civil and structural engineering and review advances in research and developments. Several case applications are reviewed. The paper presents a state-of-the-art review of fundamental research on the behavior of pultruded fiber reinforced polymer closed sections and highlights gaps in knowledge and areas of potential further research.

关键词: fibre reinforced polymer composites     behaviour of FRPs tubular sections     pultruded FRP tubular profiles     FRP tubes in bridges     applications of pultruded FRP tubes     new-build with FRP tubes    

Experimental flexural behavior of SMA-FRP reinforced concrete beam

Adeel ZAFAR, Bassem ANDRAWES

《结构与土木工程前沿(英文)》 2013年 第7卷 第4期   页码 341-355 doi: 10.1007/s11709-013-0221-y

摘要: The most critical drawback in currently used steel reinforcement in reinforced concrete (RC) structures is susceptibility to accumulation of plastic deformation under excessive loads. Many concrete structures due to damaged (yielded) steel reinforcement have undergone costly repairs and replacements. This research presents a new type of shape memory alloy (SMA)-based composite reinforcement with ability to withstand high elongation while exhibiting pseudo-elastic behavior. In this study, small diameter SMA wires are embedded in thermoset resin matrix with or without additional glass fibers to develop composite reinforcement. Manufacturing technique of new proposed composite is validated using microscopy images. The proposed SMA-FRP composite square rebars are first fabricated and then embedded in small scale concrete T-beam. 3-point bending test is conducted on manufactured RC beam using a cyclic displacement controlled regime until failure. It is found that the SMA-FRP composite reinforcement is able to enhance the performance of concrete member by providing re-centering and crack closing capability.

关键词: re-centering     shape memory alloys     concrete     composite     fiber reinforced polymer     scanning electron microscopy    

High-efficiency inspecting method for mobile robots based on task planning for heat transfer tubes in

《机械工程前沿(英文)》 2023年 第18卷 第2期 doi: 10.1007/s11465-022-0741-z

摘要: Many heat transfer tubes are distributed on the tube plates of a steam generator that requires periodic inspection by robots. Existing inspection robots are usually involved in issues: Robots with manipulators need complicated installation due to their fixed base; tube mobile robots suffer from low running efficiency because of their structural restricts. Since there are thousands of tubes to be checked, task planning is essential to guarantee the precise, orderly, and efficient inspection process. Most in-service robots check the task tubes using row-by-row and column-by-column planning. This leads to unnecessary inspections, resulting in a long shutdown and affecting the regular operation of a nuclear power plant. Therefore, this paper introduces the structure and control system of a dexterous robot and proposes a task planning method. This method proceeds into three steps: task allocation, base position search, and sequence planning. To allocate the task regions, this method calculates the tool work matrix and proposes a criterion to evaluate a sub-region. And then all tasks contained in the sub-region are considered globally to search the base positions. Lastly, we apply an improved ant colony algorithm for base sequence planning and determine the inspection orders according to the planned path. We validated the optimized algorithm by conducting task planning experiments using our robot on a tube sheet. The results show that the proposed method can accomplish full task coverage with few repetitive or redundant inspections and it increases the efficiency by 33.31% compared to the traditional planning algorithms.

关键词: steam generator transfer tubes     mobile robot     dexterous structure     task planning     efficient inspection    

Theoretical study on the confine-stiffening effect and fractal cracking of square concrete filled steel tubes

《结构与土木工程前沿(英文)》 2021年 第15卷 第6期   页码 1317-1336 doi: 10.1007/s11709-021-0763-3

摘要: Tension stress in steel-concrete composite is widely observed in engineering design. Based on an experimental program on tension performance of three square concrete-filled tubes (SCFT), the tension theory of SCFT is proposed using a mechanics-based approach. The tension stiffening effect, the confining strengthening effect and the confining stiffening effect, observed in tests of SCFTs are included in the developed tension theory model. Subsequently, simplified constitutive models of steel and concrete are proposed for the axial tension performance of SCFT. Based on the MSC.MARC software, a special fiber beam-column element is proposed to include the confining effect of SCFTs under tension and verified. The proposed analytical theory, effective formulas, and equivalent constitutive laws are extensively verified against three available tests reported in the literature on both global level (e.g., load-displacement curves) and strain level. The experimental verification proves the accuracy of the proposed theory and formulations in simulating the performance of SCFT members under tension with the capability to accurately predict the tensile strength and stiffness enhancements and realistically simulate the fractal cracking phenomenon.

关键词: square concrete filled tubes     confine-stiffening     confine-strengthening     fractal cracking     fracture    

FRP筋预应力混凝土梁抗弯性能研究进展

邓宗才,王作虎,杜修力,刘景园

《中国工程科学》 2006年 第8卷 第8期   页码 86-91

摘要:

FRP筋预应力混凝土结构已成为国内外工程领域研究的重点,文章分别介绍了国内外体内有粘结、体内无粘结和体外无粘结FRP筋预应力混凝土梁抗弯性能研究的主要成果,并对今后拟开展的研究工作提出了建议。

关键词: FRP    预应力混凝土梁     抗弯性能    

Investigation on modeling parameters of concrete beams reinforced with basalt FRP bars

Jordan CARTER, Aikaterini S. GENIKOMSOU

《结构与土木工程前沿(英文)》 2019年 第13卷 第6期   页码 1520-1530 doi: 10.1007/s11709-019-0580-0

摘要: Fiber-reinforced polymer (FRP) bars are widely used as internal reinforcement replacing the conventional steel bars to prevent from corrosion. Among the different types of FRP bars, basalt FRP (BFRP) bars have been used in different structural applications and, herein, three already tested concrete beams reinforced with BFRP bars are analyzed using three-dimensional (3-D) finite element analysis (FEA). The beams were tested in four-point bending. In the FEA the behavior of concrete is simulated using the “Concrete-Damaged Plasticity” model offered in ABAQUS software. The research presented here presents a calibrated model for nonlinear FEA of BFRP concrete beams to predict their response considering both the accuracy and the computational efficiency. The calibration process showed that the concrete model should be regularized using a mesh-dependent characteristic length and material-dependent post-yield fracture and crushing energies to provide accurate mesh-size independent results. FEA results were compared to the test results with regard to failure load and crack patterns. Both test the results and the numerical results were compared to the design predictions of ACI 440.1R-15 and CSA S806-12, where CSA S806-12 seems to overestimate the shear strength for two beams.

关键词: basalt Fiber-reinforced polymer bars     reinforced concrete beams     finite element analysis     damaged plasticity model     design codes    

Numerical simulation of squat reinforced concrete wall strengthened by FRP composite material

Ali KEZMANE,Said BOUKAIS,Mohand Hamizi

《结构与土木工程前沿(英文)》 2016年 第10卷 第4期   页码 445-455 doi: 10.1007/s11709-016-0339-9

摘要: The advanced design rules and the latest known earthquakes, have imposed a strengthening of reinforced concrete structures. Many research works and practical achievements of the application of the external reinforcement by using FRP composite materials have been particularly developed in the recent years. This type of strengthening seems promising for the seismic reinforcement of buildings. Among of the components of structures that could affect the stability of the structure in case of an earthquake is the reinforced concrete walls, which require in many cases a strengthening, especially in case where the diagonal cracks can be developed. The intent of this paper is to present a numerical simulation of squat reinforced concrete wall strengthened by FRP composite material (carbon fiber epoxy). The intent of this study is to perform finite element model to investigate the effects of such reinforcement in the squat reinforced concrete walls. Taking advantage of a commercial finite element package ABAQUS code, three-dimensional numerical simulations were performed, addressing the parameters associated with the squat reinforced concrete walls. An elasto-plastic damage model material is used for concrete, for steel, an elastic-plastic behavior is adopted, and the FRP composite is considered unidirectional and orthotropic. The obtained results in terms of displacements, stresses, damage illustrate clearly the importance of this strengthening strategy.

关键词: simulation     strengthening     reinforced concrete wall     squat wall     FRP composite material     damage     Abaqus    

Moment-curvature relationship of FRP-concrete-steel double-skin tubular members

Mingxue LIU, Jiaru QIAN

《结构与土木工程前沿(英文)》 2009年 第3卷 第1期   页码 25-31 doi: 10.1007/s11709-009-0012-7

摘要: Tests were conducted on 3 specimens to study the flexural behavior of fiber reinforced polymer (FRP)-concrete-steel double-skin tubular members (DSTMs). The strip method was used to calculate the section moment-curvature curves of the 3 specimens and 12 models. A theoretical formula is presented for the flexural strength of DSTMs. The test results show that the tension zone of the specimen FRP tubes was in hoop compression while the compression zone was in hoop tension. The load-carrying capacity did not decrease even when the mid-span deflection reached about 1/24 of the span length. The tests, simulation and theoretical analysis resulted in a simplified formula for the flexural strength of DSTMs and a tri-linear moment-curvature model was expressed as a function of the section bending stiffness for DSTMs.

关键词: fiber reinforced polymer (FRP)     concrete     steel     double-skin tubular members (DSTMs)     moment-curvature curve     flexural strength    

Innovative hybrid reinforcement constituting conventional longitudinal steel and FRP stirrups for improved

Mostafa FAKHARIFAR,Ahmad DALVAND,Mohammad K. SHARBATDAR,Genda CHEN,Lesley SNEED

《结构与土木工程前沿(英文)》 2016年 第10卷 第1期   页码 44-62 doi: 10.1007/s11709-015-0295-9

摘要: The use of fiber reinforced polymer (FRP) reinforcement is becoming increasingly attractive in construction of new structures. However, the inherent linear elastic behavior of FRP materials up to rupture is considered as a major drawback under seismic attacks when significant material inelasticity is required to dissipate the input energy through hysteretic cycles. Besides, cost considerations, including FRP material and construction of pre-fabricated FRP configurations, especially for stirrups, and probable damage to epoxy coated fibers when transported to the field are noticeable issues. The current research has proposed a novel economical hybrid reinforcement scheme for the next generation of infrastructures implementing on-site fabricated FRP stirrups comprised of FRP sheets. The hybrid reinforcement consists of conventional longitudinal steel reinforcement and FRP stirrups. The key feature of the proposed hybrid reinforcement is the enhanced strength and ductility owing to the considerable confining pressure provided by the FRP stirrups to the longitudinal steel reinforcement and core concrete. Reinforced concrete beam specimens and beam-column joint specimens were tested implementing the proposed hybrid reinforcement. The proposed hybrid reinforcement, when compared with conventional steel stirrups, is found to have higher strength, stiffness, and energy dissipation. Design methods, structural behavior, and applicability of the proposed hybrid reinforcement are discussed in detail in this paper.

关键词: FRP     ductility     confinement     seismic     shear    

New technique of precision necking for long tubes with variable wall thickness

Yongqiang GUO, Chunguo XU, Jingtao HAN, Zhengyu WANG

《机械工程前沿(英文)》 2020年 第15卷 第4期   页码 622-630 doi: 10.1007/s11465-019-0565-7

摘要: This study analyzed the deformation law of rear axles with variable wall thickness under bidirectional horizontal extrusion and found that necking was accompanied by upsetting deformation through theoretical calculation, numerical simulation, and experimental research. The sequence and occurrence of necking and upsetting deformations were obtained. A theory of deformation was proposed by controlling the distribution of temperature field. Effective processes to control the wall thickness of rear axle at different positions were also proposed. The ultimate limit deformation with a necking coefficient of 0.68 could be achieved using the temperature gradient coefficient. A new technology of two-step heating and two-step extrusion for a 13 t rear axle was developed, qualified test samples were obtained, and suggestions for further industrial application were put forward.

关键词: extrusion     rear axle     necking coefficient     temperature gradient    

Multiple damage detection in complex bridges based on strain energy extracted from single point measurement

Alireza ARABHA NAJAFABADI, Farhad DANESHJOO, Hamid Reza AHMADI

《结构与土木工程前沿(英文)》 2020年 第14卷 第3期   页码 722-730 doi: 10.1007/s11709-020-0624-5

摘要: Strain Energy of the structure can be changed with the damage at the damage location. The accurate detection of the damage location using this index in a force system is dependent on the degree of accuracy in determining the structure deformation function before and after damage. The use of modal-based methods to identify damage in complex bridges is always associated with problems due to the need to consider the effects of higher modes and the adverse effect of operational conditions on the extraction of structural modal parameters. In this paper, the deformation of the structure was determined by the concept of influence line using the Betti-Maxwell theory. Then two damage detection indicators were developed based on strain energy variations. These indices were presented separately for bending and torsion changes. Finite element analysis of a five-span concrete curved bridge was done to validate the stated methods. Damage was simulated by decreasing stiffness at different sections of the deck. The response regarding displacement of a point on the deck was measured along each span by passing a moving load on the bridge at very low speeds. Indicators of the strain energy extracted from displacement influence line and the strain energy extracted from the rotational displacement influence line (SERIL) were calculated for the studied bridge. The results show that the proposed methods have well identified the location of the damage by significantly reducing the number of sensors required to record the response. Also, the location of symmetric damages is detected with high resolution using SERIL.

关键词: damage detection     strain energy     influence line     complex bridges     rotation displacement    

Performance of insulated FRP-strengthened concrete flexural members under fire conditions

Pratik P. BHATT, Venkatesh K. R. KODUR, Anuj M. SHAKYA, Tarek ALKHRDAJI

《结构与土木工程前沿(英文)》 2021年 第15卷 第1期   页码 177-193 doi: 10.1007/s11709-021-0714-z

摘要: This paper presents the results of fire resistance tests on carbon fiber-reinforced polymer (CFRP) strengthened concrete flexural members, i.e., T-beams and slabs. The strengthened members were protected with fire insulation and tested under the combined effects of thermal and structural loading. The variables considered in the tests include the applied load level, extent of strengthening, and thickness of the fire insulation applied to the beams and slabs. Furthermore, a previously developed numerical model was validated against the data generated from the fire tests; subsequently, it was utilized to undertake a case study. Results from fire tests and numerical studies indicate that owing to the protection provided by the fire insulation, the insulated CFRP-strengthened beams and slabs can withstand four and three hours of standard fire exposure, respectively, under service load conditions. The insulation layer impedes the temperature rise in the member; therefore, the CFRP–concrete composite action remains active for a longer duration and the steel reinforcement temperature remains below 400°C, which in turn enhances the capacity of the beams and slabs.

关键词: concrete beams     concrete slabs     carbon fiber-reinforced polymers     fire resistance     FRP strengthening     repair     retrofitting    

An improved design method to predict the E-modulus and strength of FRP composites at different temperatures

Mohammed FARUQI, Gobishanker RAJASKANTHAN, Breanna BAILEY, Francisco AGUINIGA

《结构与土木工程前沿(英文)》 2022年 第16卷 第12期   页码 1654-1654 doi: 10.1007/s11709-020-0622-7

Life cycle and performance based seismic design of major bridges in China

FAN Lichu

《结构与土木工程前沿(英文)》 2007年 第1卷 第3期   页码 261-266 doi: 10.1007/s11709-007-0033-z

摘要: The idea of life cycle and performance based seismic design of major bridges is introduced. Based on the key components and non-key components of a bridge and the consideration of the inspectability, replaceability, reparability, controllability and retrofitability of the bridge components, different seismic design levels and expected performance objectives are suggested for the major bridges in China. The vulnerability analysis and progressive collapse analysis, as well as risk assessment, are also proposed to be the important issues to study in order to guide the seismic design of major bridges in the future.

关键词: controllability     progressive     reparability     different     important    

Aerodynamic stability evolution tendency of suspension bridges with spans from 1000 to 5000 m

《结构与土木工程前沿(英文)》 doi: 10.1007/s11709-023-0980-z

摘要: Aerodynamic instability owing to aerostatic and flutter-related failures is a significant concern in the wind-resistant design of long-span suspension bridges. Based on the dynamic characteristics of suspension bridges with spans ranging from 888 to 1991 m, we proposed fitted equations for increasing spans and base frequencies. Finite element models of suspension bridges with increasing span from 1000 to 5000 m were constructed. The structural parameters were optimized to follow the fitted tendencies. To analyze the aerodynamic instability, streamlined single-box section (SBS), lattice truss section (LTS), narrow slotted section (NSS), and wide slotted section (WSS) were considered. We performed three-dimensional (3-D) full-mode flutter analysis and nonlinear aerostatic instability analysis. The flutter critical wind speed continuously decreases with span growth, showing an unlimited approaching phenomenon. Regarding aerostatic instability, the instability wind speed decreases with span to approximately 3000 m, and increases when the span is in the range of 3000 to 5000 m. Minimum aerostatic instability wind speed with SBS or LTS girder would be lower than observed maximal gust wind speed, indicating the probability of aerostatic instability. This study proposes that suspension bridge with span approximately 3000 m should be focused on both aerostatic instability and flutter, and more aerodynamic configuration optimistic optimizations for flutter are essential for super long-span suspension bridges with spans longer than 3000 m.

关键词: suspension bridge     super long-span     finite element model     aerodynamic instability     aerodynamic configuration    

标题 作者 时间 类型 操作

Civil and structural engineering applications, recent trends, research and developments on pultruded fiber reinforced polymer closed sections: a review

Alfred Kofi GAND, Tak-Ming CHAN, James Toby MOTTRAM

期刊论文

Experimental flexural behavior of SMA-FRP reinforced concrete beam

Adeel ZAFAR, Bassem ANDRAWES

期刊论文

High-efficiency inspecting method for mobile robots based on task planning for heat transfer tubes in

期刊论文

Theoretical study on the confine-stiffening effect and fractal cracking of square concrete filled steel tubes

期刊论文

FRP筋预应力混凝土梁抗弯性能研究进展

邓宗才,王作虎,杜修力,刘景园

期刊论文

Investigation on modeling parameters of concrete beams reinforced with basalt FRP bars

Jordan CARTER, Aikaterini S. GENIKOMSOU

期刊论文

Numerical simulation of squat reinforced concrete wall strengthened by FRP composite material

Ali KEZMANE,Said BOUKAIS,Mohand Hamizi

期刊论文

Moment-curvature relationship of FRP-concrete-steel double-skin tubular members

Mingxue LIU, Jiaru QIAN

期刊论文

Innovative hybrid reinforcement constituting conventional longitudinal steel and FRP stirrups for improved

Mostafa FAKHARIFAR,Ahmad DALVAND,Mohammad K. SHARBATDAR,Genda CHEN,Lesley SNEED

期刊论文

New technique of precision necking for long tubes with variable wall thickness

Yongqiang GUO, Chunguo XU, Jingtao HAN, Zhengyu WANG

期刊论文

Multiple damage detection in complex bridges based on strain energy extracted from single point measurement

Alireza ARABHA NAJAFABADI, Farhad DANESHJOO, Hamid Reza AHMADI

期刊论文

Performance of insulated FRP-strengthened concrete flexural members under fire conditions

Pratik P. BHATT, Venkatesh K. R. KODUR, Anuj M. SHAKYA, Tarek ALKHRDAJI

期刊论文

An improved design method to predict the E-modulus and strength of FRP composites at different temperatures

Mohammed FARUQI, Gobishanker RAJASKANTHAN, Breanna BAILEY, Francisco AGUINIGA

期刊论文

Life cycle and performance based seismic design of major bridges in China

FAN Lichu

期刊论文

Aerodynamic stability evolution tendency of suspension bridges with spans from 1000 to 5000 m

期刊论文